

Very High Temperature Gas Cooled Reactor Systems

(VHTR)

Presented by: Finis Southworth

Idaho National Engineering & Environmental Laboratory

People Involved in This Work

Abram, Tim

Ball, Syd

• Ballot, Bernard

Carre, Franck *

• Finck, Phillip

Fukuda, Kosaku

• Greneche, Dominique

Hildebrandt, Phil *

Kadak, Andy

Kendall, Jim

• Khalil, Hussein

• Kim, Shin Wan

• Lensa, Werner von

• Ogawa, Masuro

• Royen, Jacques

Shenoy, Arkal

• Southworth, Finis ** ***

British Nuclear Fuels, LTD.

Oak Ridge National Laboratory

Framatome-ANP

Commissariat a l'Energie Atomique

Argonne National Laboratory

International Atomic Energy Agency

COGEMA

EMT Inc.

Massachusetts Institute of Technology

International Atomic Energy Agency

Argonne National Laboratory

KOPEC

EURATOM / FZJ Juelich

JAERI

OECD-NEA

General Atomics

INEEL

* Co-chair ** Technical Director

*** Presenter

Agenda

- Concept Definition
- Mission & Importance
- R&D Needs
- Worldwide Involvement
- First Steps
- Discussion

Very High Temperature Reactor Systems (VHTR)

- Four concepts submitted
- General features of VHTR--
 - >900 C coolant core exit temperature
 - prismatic core, 600 MWth, LEU once-through cycle
 - could be pebble bed or prismatic core
- Shows promise for
 - Gains in sustainability and flexibility
 - Significant advance towards safety goals
 - Comparable economics
 - Bridge to hydrogen economy

Very High Temperature Reactor Concepts General Description

Gas Cooled Reactor Concept Sets (TWG-2)

- Modular Pebble Beds (PBR)
- Prismatic Modular Reactors (PMR)
- Very High Temperature Reactors (VHTR)
- Gas Fast Reactors (GFR)

VHTR concepts extend performance capability and establish envelope of advanced fuel and materials research for gas cooled systems

- Coolant outlet temperature -- > 900 C
- Fuel operating temperature -- > 1250 C

Coolant temperature ranges -- LWR ~ 320 C, CO2 - 400-600 C, LMFBR 500 - 700 C, Gas 700- 950 C

VHTR concept set (4) -- GTMHR, Annular Pebble Bed (APBR), VHTGCR, A-HTR (HTTR)

Very High Temperature Reactor Concepts

	VERY HIGH TEMPERATURE CONCEPT			
	G-18 (A-HTR) REFERENCE	G-12 (MHR)	G-17 (APBR)	G-9 (VHTGCR)
FUEL - Fuel	LEU Th, Pu	LEU/Th, Pu/U, Pu/Th	LEU	LEU
- Fuel Particle Coating	SiC, ZrC	SiC		ZrC
REACTOR - Core Type - Thermal Power - Power Density - Fuel Burn-up - Refueling Period - Coolant Conditions - Inlet/Outlet Temperature - Outlet Pressure	Pin-in Block 600MW 6MW/m³ -150GWD/ton 2-6 years 560/850 C 630/950 C -6.8MPa	Multi-hole Block 600MW x 4 Modules 6.6MW/m³ -120GWD/ton Outlet:-1000 C	Pebble 300-600MW 120-200GWD/ton 250/(700-1000) C 5-8MPa	Not specified Outlet: 1200-1500 C
APPLICATION	H2 Production	Process Heat H2 Production	Cogeneration Process Heat, H2	H2 Production
FUEL CYCLE	Once through	Once-through	Once-through	Once Through

Temperature Capability of Concepts

EG-Electrical Generation

NPH-Nuclear Process Heat Applications

Technical Working Group 2 -- Gas Cooled Reactor Systems

Modular Helium Reactor (MHR) Reference Concept for VHTR Concept Set

- Based on prismatic (GTMHR) design connected to steam reformer/steam generator -- non electric
- High temperature source for range of process heat applications
- High Temperature Considerations
 - Advanced particle coatings for FP retention at elevated temperatures
 - Advanced fuel materials (carbides. nitrides, cermets, etc)
 - Fuel element design for reduced ◄ temperature drop - fuel to coolant
 - Control materials and design
 - Structural materials
 - Heat exchanger / recuperator materials and design

Coating: SiC,ZrC,NbC

Central Cooling Channels

Pyro Carbon Coating

November

Roadmap

VHTR Mission & Importance

- 30 % of world primary fuel use is to generate electricity
- 17 % of electricity uses nuclear fuel
- Nuclear power can offset other primary fuels in applications other than electricity
- VHTRs may significantly reduce liquid and gaseous fossil fuel demands

High Temperatures Enable a Range of Process Heat Applications

High Outlet Temperatures Provide Increased Electrical Conversion Efficiency

High efficiency benefits all aspects of system performance

Efficiency vs Turbine Inlet Temperature for Recuperated **Brayton Cycle**)

GE Power Systems MS7001FB

- Single crystal Technology (GE's jet engines)
- •2500° F-class firing temperature (1644 K, 1371 °C)

Thermal efficiency (%)

VHTR Hydrogen Production Efficiency S-I Cycle

VHTR Hydrogen Production Efficiency Steam Electrolysis

Efficiencies of High Temperature Electrolysis

Very High Temperature Reactor Issues

- Cost / Benefit -- increased performance at higher temperatures versus potential impacts on cost/reliability
- Proximity of high temperature process heat application to nuclear system – safety, heat transport
- Materials lifetime at elevated temperatures

VHTR Builds Upon Near Term Gas Reactors

VHTR R&D Needs

Fuel

- F1: Demonstrate TRISO fuel to required quality level and performance. Test in prototypic reactor conditions and in accident conditions. Fabricate test articles. Include Cs and Ag diffusion measurements and control.
- Extend to High Burnup (>200,000 MWD/MTU)
- F2: For core exit coolant temperatures above 900 °C, fuel temperatures above 1300 °C may be needed. Examine higher temperature coatings (e.g. ZrC). Repeat F1 development.
- Fuel Development is a viability issue for all Gen IV and near term gas reactors (in the United States)

VHTR R&D Needs (Fuel Cycle)

- Fuel Cycle
 - FC1: Fabrication Process needs to be developed for fuel
 - » Coating process definition and demonstration (inc. ZrC)
 - » Kernel fabrication process demonstration
 - » Process line components and QC methods selection
 - » In-core irradiation testing to qualify fuel (see fuel section)
 - FC2: Spent Fuel characteristics need to be demonstrated
 - » Determine long term repository behavior of fuel
 - » Develop pretreatment and conditioning methods
 - » Develop closed and open cycle separation technologies.

VHTR R&D Needs (Rx Systems)

- Existing control rod materials not well suited to high temperatures--Develop, test, and design new materials (graphite fiber, etc.)
- High Temperature materials needed for key components
 - Reactor vessel material selection and qualification
 - Hot gas ducts and components materials
 - Recuperator materials
 - Insulation materials
 - Expansion joint materials
 - Intermediate heat exchanger materials
 - High temperature concrete for RCCS
 - Impure helium effects on materials testing.
 - HT Isolation Valve Materials
- Graphite Fabrication and Qualification
- Graphite Disposal or Reuse
- Decommissioning Issues

VHTR R&D Needs (Balance of Plant)

- High Temperature materials for turbine are needed
- Matching of process heat application to heat source required
- Hydrogen production processes need definition
- Compressors, catcher bearing, magnetic bearing, etc. require trade studies
- Demonstrate Rx/Process Interface with IS Process
- Engineering Demonstration of H2 Production

VHTR R&D Needs (Safety & Performance)

- Air ingress behavior needs confirmation
- TRISO fuel performance needs demonstration
- Reactivity insertion events need to be assessed
- Transient models need qualification
- Thermal mixing at core outlet uncertain
- RCCS tube failure needs to be modeled
- Effect of direct cycle on existing system codes required
- FP transport in RCS needs definition
- PRA Model may need to be defined
- Collocation issues of process applications and nuclear supply

VHTR R&D Needs (Economics, Codes)

- Modularity benefits need quantification
- Plant equipment reliability needed
- Reduced staffing may improve O&M costs
- Need market assessment for H2 or other PHA products

- Core neutronics codes needed
- T&H codes needed

Worldwide Involvement

- Europe-- HTR-TN
- SINTER Network
- JAERI-- HTTR
- Significant US Industrial Growth in H₂ Production
- Entergy Interest in H₂ -MHR
- NERI and INERI Projects-- University of Kentucky, Texas A&M, General Atomics, SNL, INEEL, ORNL, CEA
- Ongoing GCR Development is supportive of VHTR--South Africa, Russia, ROC (HTR-10)

First Steps

- Refine R&D Scope
 - VHTR System Concept Study
 - Program Plan
- Conduct Technical Information Exchange
 (May be in conjunction with International Conference)

 Invite Worldwide Interested Contributors and Users
- Establish International Partnerships—government agencies, laboratory and industrial

Technical Working Group 2 -- Gas Cooled Reactor Systems

Discussion

